
HealthyFROGS iOS Developer’s Guide 	

	

	 	
	

© 2012 - 2013 Computer Science Department, Texas Christian University - All Rights Reserved

iOS Developer’s Guide
Version 1.0

Tuesday May 7, 2013

HealthyFROGS iOS Developer’s Guide i

	

	

Revision Sign-Off
By signing the following, the team member asserts that he has read the entire document
and has, to the best of his knowledge, found the information contained herein to be
accurate, relevant, and free of typographical error.

Name Signature Date

Alex Anduss

Baer Bradford

Greg Kolesar

HealthyFROGS iOS Developer’s Guide ii

	

	

Revision History
The following is a history of document revisions.

Version Date Revised Comments

0.1 Apr. 28, 2013 Initial draft.

1.0 May 7, 2013 Version 1.0

HealthyFROGS iOS Developer’s Guide iii

	

	

Table of Contents
Revision Sign-Off .. i
Revision History .. ii
Table of Contents ... iii
1. Introduction .. 1

1.1 Purpose ... 1
1.2 Overview ... 1

2. iOS Device Requirements .. 2
2.1 iOS Version .. 2
2.2 iPhones .. 2
2.3 iPod Touches ... 2
2.4 iPads... 2
2.4 Network .. 2
2.5 Wikipedia’s List of iOS devices and specifications ... 2

3. Data Model ... 3
3.1 Account Singleton .. 4
3.2 Survey .. 5
3.3 Question ... 6
3.4 Response ... 7
3.5 Fort Worth Resource .. 7
3.6 Health Education Resource .. 8

4. iOS Web Service .. 9
4.1 Web Service Singleton ... 10
4.2 Create new GET call .. 12
4.3 Create new POST call .. 13

5. Storyboard ... 14
5.1 Adding to the Storyboard .. 15
5.2 Removing a view from the Storyboard ... 18
5.3 Create/Remove Segues ... 19

HealthyFROGS iOS Developer’s Guide iv

	

	

5.4 Use a nib file with the Storyboard ... 20
6. Adding/Removing from the Main Menu .. 21

6.1 The Main Menu Arrays ... 21
7. Hard Coded GoodNEWS Text Locations ... 22

7.1 GNFWCreateMoreInfoViewController.m .. 22
7.2 UNTHSC.xib ... 23
7.3 WMEnrollmentView.xib .. 24
7.4 Initial Screen ... 25

8. Submitting to the App Store ... 26

HealthyFROGS iOS Developer’s Guide 1

	

	

1. Introduction

1.1 Purpose
The purpose of this document is to aid any developers with this system through modifying
the app, deploying test versions to devices, and deploying updates to the App Store.

1.2 Overview
GoodNEWS Fort Worth is a program created by the University of North Texas Health
Science Center in conjunction with Fort Worth City Leaders to promote healthy living in
the city. In the past, the program had been a series of seminars that were used to assist
citizens with their lifestyle. The app will be a great way for the GoodNEWS team to reach
out and help the citizens of Fort Worth better their lifestyles. The app will also allow the
citizens to respond to surveys and the GoodNEWS team can use the results to make Fort
Worth a healthier place.

HealthyFROGS iOS Developer’s Guide 2

	

	

2. iOS Device Requirements
This section lists the requirements needed to run the GoodNEWS Fort Worth App.

2.1 iOS Version
iOS Version 6.0 and higher are required to use this app. iOS 6 is required due to the use
of Auto-Layout, a feature available in iOS 6+. This feature allows the developer to write
for one screen size and it will attempt to infer and adapt for the other screen sizes.

2.2 iPhones
The iPhones that support iOS 6.0 are the iPhone 3GS, iPhone 4, iPhone 4S, iPhone 5.

2.3 iPod Touches
The iPod Touch devices that support iOS 6 are the iPod Touch 4th Generation and the
iPod Touch 5th Generation. The easiest way to tell if you iPod Touch can run iOS 6 is to
see if it has a front facing camera. If it does, it is a 4th or 5th generation.

2.4 iPads
The iPad 2, iPad 3rd Generation, iPad 4th Generation, and the iPad Mini will all support
use of this App. The App does not support the iPad’s full resolution, but you can run it in
a sandboxed mode (See Section 3.2).

2.4 Network
The App does require constant connection to a network, it can be a 3G, 4G, or LTE
cellular network, or a Wi-Fi network. If for some reason you lose network capability, you
will be logged out of your account for security and data integrity issues.

2.5 Wikipedia’s List of iOS devices and specifications
http://en.wikipedia.org/wiki/List_of_iOS_devices

HealthyFROGS iOS Developer’s Guide 3

	

	

3. Data Model
This section lays out the Data Model as seen in Figure 3.1.

Figure 3.1

HealthyFROGS iOS Developer’s Guide 4

	

	

3.1 Account Singleton
When the user creates their account or logs in, all of the important user data is stored in a
single account object, or the account singleton. When a user creates their account and all
of the information is submitted to the CMS, there is a call made to grab all of the account
information. The JSON Parser automatically creates a dictionary of this object which is
then stored in the _accountDictionay ivar (instance variable) . Figure 3.2 will show the
header files and the getter methods that can be used to get information from the
singleton.

Figure 3.2 GNFWAccount.h

HealthyFROGS iOS Developer’s Guide 5

	

	

I made the decision to use methods instead of properties for the data, because I used the
dictionary to hold all of my data. In hindsight I should have made the dictionary a
property, but this way also works. By using the methods to set and get the data, I could
access the dictionary much easier. I decided to use the dictionary, because I could just
pass the whole dictionary to the JSON parser which formatted it properly for the CMS.
Figure 3.3 demonstrates a few method calls to get information from the singleton.

Figure 3.3 Sample Calls to the Singleton

The call will always start with [GNFWAccount account] which gets the instance of the
singleton, and then any of the methods in GNFWAccount.h.

3.2 Survey
There are three parts to the data structure of surveying. The main survey class is
GNFWSurvey.h. This is seen in Figure 3.4.

Figure 3.4 GNFWSurvey.h

GNFWSurvey.h is the basic survey object. It contains the survey data, and the questions.
While the user is taking a survey, the object also keeps track of how the survey is
progressing, like if it has started, finished, or what was the last question the user was on.
This object is used for the Community Vote and Poll section since there is no need to
grade them. For the Track and Progress and Health Assessment surveys, there is the

HealthyFROGS iOS Developer’s Guide 6

	

	

GNFWAssessmentSurvey.h object. This is a subclass of GNFWSurvey.h which means it
inherits everything GNFWSurvey does, but allows for more. It leads to simpler code.
GNFWAssessmentSurvey handles all of the grading of a survey that was just taken, it
also stores the average grade, most recent grade, and the most recent time that a survey
was taken. The final surveying object is the GNFWSurveyGradeDescriptions object. This
object is used to store the upper and lower bound of a survey grade range and it also
hold the description that goes along with these grades. The grade descriptions are stored
in the GNFWSurvey object’s _gradeDescriptions ivar.

3.3 Question
The GNFWQuestion object is a simple object as seen in Figure 3.5.

Figure 3.5 GNFWQuestion.h

This object holds an array of responses, the question text, and it also has the parent
survey which makes it easy to traverse the web of survey-question-responses. It also
holds a pointer to the selected response which makes it easy for the developer to get the
response id for the CMS.

HealthyFROGS iOS Developer’s Guide 7

	

	

3.4 Response
The response object is also simple. See Figure 3.6.

Figure 3.6 GNFWResponse.h

This object holds the response id, response text, point value of the response for grading,
and also the parent question, which also can be used to get the parent survey.

3.5 Fort Worth Resource
Fort Worth Resources are slightly complicated due to the need for Geoencoding. There is
a handy wrapper class for it to keep the ugly code from being exposed to the developer.

Figure 3.7 GNFWFortWorthResourceArray.h

The GNFWFortWorthResourceArray class holds the array of all the Fort Worth
Resources for a certain section. The object is first initialized in the web service call when
the user clicks on Fort Worth Resources. To make it simple for the developer to add
objects to the array, they do not have to create an AddressObject themselves, the
developer just has to call to add a resource and then it will create the AddressObject and

HealthyFROGS iOS Developer’s Guide 8

	

	

add it to the array. Due to some last minute changes, the updateResourceWithName
method is no longer used. It was removed to improve efficiency with the CMS call and
memory management on the devices.

Figure 3.8 GNFWAddressObject.h

The GNFWAddressObject is created when the CMS call is made to retrieve a particular
Fort Worth Resource. This object was tricky to create, because some of the data values
may come back null, and dictionaries do not handle null values well, so I used properties
instead, and since everything is set one in the init method, all of the null checking is
handled there. Also, when this object is initialized with a full address, an asynchronous
call is made to Geoencode the location. The asynchronous call then notifies the object
when it has finished Geoencoding so it can be used with the mapping feature.

3.6 Health Education Resource
A Health Education Resource object consists of a Name and a URL.

HealthyFROGS iOS Developer’s Guide 9

	

	

4. iOS Web Service
This section will lay out how to use the web service. Figure 4.1 shows all of the classes
contained in the web service.

Figure 4.1 Web Service Class list

HealthyFROGS iOS Developer’s Guide 10

	

	

4.1 Web Service Singleton
Using the web service singleton is important to the flow of the program. The singleton
and the classes that interact with it support many features including asynchronous calls,
fire-and-forget calls, and callbacks. It is simple to use the singleton object. The first thing
you want to do when creating a new class for a different service is to create the property
in the interface file, Figure 4.2 shows the existing properties and the new one will just
follow that format.

Figure 4.2 GNFWCMSWebService.h

As you can see there is not much to it, just declare the class and the variable name you
would like to give it. You can really see the magic of the singleton work in the
implementation file, see Figure 4.3.

HealthyFROGS iOS Developer’s Guide 11

	

	

Figure 4.3 GNFWCMSWebService.m

By initializing all of the separate service classes in the singleton, you are able to access
the methods contained in these classes from anywhere. This is important, because it only
creates a single instance of these objects, and the developer does not need to worry
about ARC (Automatic Reference Counting), or garbage collection, from destroying your
instances of these objects before they can call back.

HealthyFROGS iOS Developer’s Guide 12

	

	

4.2 Create new GET call
Getting information from the content management system efficiently is quintessential to
the functionality of the app. To ensure that a stable connection is established, a single
method was created in the HTTPJSONService class to get the data from the CMS. The
JSONService was already created in the singleton, and it contains an exposed method
which takes the URL from the CMS API, the http method, which in this case will be
@”GET”, there is no data to go in, so that will get a nil, the sender will be self, and the
handler, which you will see in Figure 4.4. By putting self in the sender field, it passes the
current instance of the object making the call, this will allow the developer to call back the
object when the web call has finished.

Figure 4.4 Example GET Call

Figure 4.4 shows an example GET call for the daily quote. Here you can see how the
handler works. The handler is a C block, it uses a C struct with Objective-C data types to
sendback information. As you can see, it includes the recievedData, which is the JSON
data received from the server. The NSError object is either created by the JSONService
call, or it is user defined for a few cases, if there is no error, it will come back as nil, and
all of the errors are handled on the back end. The context is not used by any calls, but it
can be used to store any additional data that may need to come back. Finally, the sender
is the original class that made the call, and it allows for callbacks. The block works just
like a method, when the web call finishes, everything will return here. Again, you can
check to see if there was an error, and handle anything that may be needed there, and
you can use the built in JSON parser with the recievedData to generate appropriate
Objective-C objects. When you get the JSON object back from the parser, it will be an

HealthyFROGS iOS Developer’s Guide 13

	

	

NSDictionary with strings for keys, and the objects will be NSStrings, NSNumbers,
NSNulls, and NSArrays.

4.3 Create new POST call
Creating a POST call is very similar to a GET call. The only difference is for httpMethod,
you need to put @“POST” or @“PUT”, and you need to include the data from the JSON
parsed dictionary. Figure 4.5 shows the general format of a POST call.

Figure 4.5 Example POST Call

This is a good example of a POST call. The first thing you will need to do is serialize the
NSDictionary into JSON data, this data will be stored in an NSData object. This data is
then included in the call to the CMS. It will return the same way as it did with the GET
call, so see the end of Section 4.2 for more information.

HealthyFROGS iOS Developer’s Guide 14

	

	

5. Storyboard
This section will walk the user through adding and removing views from the Storyboard
as well as create new segues and interacting with separate nib (user interface) files,
Figure 5.1 shows the complete storyboard.

Figure 5.1 MainStoryboard.Storyboard

HealthyFROGS iOS Developer’s Guide 15

	

	

5.1 Adding to the Storyboard
Adding views to the storyboard is a simple process, there will be a step by step guide
with images on how to add items to the storyboard, associate the views with a view
controller, and hook up IBObjects and IBActions.
Step 1:

These are the options to choose from for view controllers, each one serves a
specific function. To create a new one, just click and drag to the storyboard grid to
create a new one.

HealthyFROGS iOS Developer’s Guide 16

	

	

Step 2:

This is what a standard view controller will look like.

Step 3:

On this screen, in the right side bar, 3rd option on the top, you will see an option for
custom class. This is important, because it will allow you to interact with any text
fields, buttons, etc. that you put on the view. To do this, you need to create a new
subclass of the view you chose.

HealthyFROGS iOS Developer’s Guide 17

	

	

Step 4:

Here, 2 labels, a button, and a text field are added, and since it is linked to a view
controller, we can now hook up these objects to interact with the code.

HealthyFROGS iOS Developer’s Guide 18

	

	

Step 5:

To connect the Interface Builder with the objects in the code, simply create an
IBAction, which is just a method, or an IBOutlet which is a UI object. A little circle
will appear in the margin, and click in the circle and move it to the corresponding
object. When you do this, it will associate to the object in code allowing the user to
interact with it. The code can modify text on objects, get values from the objects,
and more.

5.2 Removing a view from the Storyboard
To remove a view from the storyboard, just select it, and press delete on your keyboard.
It will automatically remove all links to the code.

HealthyFROGS iOS Developer’s Guide 19

	

	

5.3 Create/Remove Segues
Segues are important in storyboards, because they guide the flow of the application. The
developer can use segues to transition between views when a certain action occurs.
They are created in the story board and can be either activated on a button push, Figure
5.1. A segue can get a name label, Figure 5.2, and be called from code, Figure 5.3. To
setup a segue to be called from code, all the developer needs to do is control + click on
the blank space in the view and drag as shown in Figure 5.1.

Figure 5.1 Connecting a Segue to a button push, just control + click on the button

and drag to the corresponding view controller.

HealthyFROGS iOS Developer’s Guide 20

	

	

Figure 5.2 Segue Identifier, this is used to call the segue transition from code, also

the style of the transition can be set from here.

Figure 5.3 Use the Identifier set in Figure 5.2 to call the transition

5.4 Use a nib file with the Storyboard
Sometimes it is easier to use a separate nib file (Interface Builder File) with the
storyboard, a few reasons could be issues with Auto Layout, or you need to access it out
of sequence from the storyboard, the map view and web browser are 2 examples from
this program. A nib file is created the same way as a storyboard, except it is a single view
controller. Calling the nib from code is easy just enter the name of the nib file without the
“.xib” at the end, see Figure 5.4.

Figure 5.4 Code to get a nib file

HealthyFROGS iOS Developer’s Guide 21

	

	

6. Adding/Removing from the Main Menu
This section will give an overview to the developer on how to add/remove and modify
components on the main menu.

6.1 The Main Menu Arrays
Look in the GNFWLeftNavView, and in the init method, there are 2 arrays, _data and
_images. The data array holds the text that will be displayed on the main menu, and the
images array holds the little images that are visible. The images need to be imported into
the project before they can be used, so drag the image to the project navigator on the left
side. To put text and an image into the menu, put the NSString you want in the data
array, and put the image name as an NSString in the same index in the array.

Figure 6.1 Main Menu Information Arrays

HealthyFROGS iOS Developer’s Guide 22

	

	

7. Hard Coded GoodNEWS Text Locations
This section will inform the developer to where they can find the locations in the app
where the text is hard coded.

7.1 GNFWCreateMoreInfoViewController.m
This class contains the text the user sees when they are entering the demographic data,
if you need to change the choices, it is done here in the arrays.

Figure 7.1 GNFWCreateMoreInfoViewController.m

HealthyFROGS iOS Developer’s Guide 23

	

	

7.2 UNTHSC.xib
This nib file contains the data for the UNTHSC screen, it has the pictures and text. The
developer can modify the nib file, and they will see the changes in the app.

Figure 7.2 UNTHSC NIB objects

Figure 7.3 UNTHSC NIB File View

HealthyFROGS iOS Developer’s Guide 24

	

	

7.3 WMEnrollmentView.xib
This nib file contains the data for the Weight Management enrollment screen it has the
pictures, description, and enroll button. The developer can modify the nib file, and they
will see the changes in the app.

Figure 7.4 WMEnrollment NIB Objects

Figure 7.5 WMEnrollment NIB View

HealthyFROGS iOS Developer’s Guide 25

	

	

7.4 Initial Screen
The Initial Screen contains an overview of what the GoodNEWS program is about. The
text can be changed via the storyboard, and is contained within a TextView.

Figure 7.6 Initial screen TextView

HealthyFROGS iOS Developer’s Guide 26

	

	

8. Submitting to the App Store
Apple had great documentation on their website on how to submit an app. Follow the link
below to visit Apple’s tutorial.
http://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/Your
FirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/AboutYourFirstAppStoreS
ubmission.html

This same process can be used to submit updates to the app store.

